All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Planar Graphs as VPG-Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10190756" target="_blank" >RIV/00216208:11320/13:10190756 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.7155/jgaa.00300" target="_blank" >http://dx.doi.org/10.7155/jgaa.00300</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7155/jgaa.00300" target="_blank" >10.7155/jgaa.00300</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Planar Graphs as VPG-Graphs

  • Original language description

    A graph is B(k) -VPG when it has an intersection representation by paths in a rectangular grid with at most k bends (turns). It is known that all planar graphs are B(3) -VPG and this was conjectured to be tight. We disprove this conjecture by showing that all planar graphs are B(2) -VPG. We also show that the 4-connected planar graphs constitute a subclass of the intersection graphs of Z-shapes (i.e., a special case of B(2) -VPG). Additionally, we demonstrate that a B(2) -VPG representation of a planargraph can be constructed in O(n^3/2 ) time. We further show that the triangle-free planar graphs are contact graphs of: L-shapes, ?-shapes, vertical segments, and horizontal segments (i.e., a special case of contact B(1) -VPG). From this proof we obtaina new proof that bipartite planar graphs are a subclass of 2-DIR.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Graph Algorithms and Applications

  • ISSN

    1526-1719

  • e-ISSN

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    475-494

  • UT code for WoS article

  • EID of the result in the Scopus database