All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Planar Graphs as VPG-Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10190904" target="_blank" >RIV/00216208:11320/13:10190904 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007/978-3-642-36763-2_16" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-642-36763-2_16</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-36763-2_16" target="_blank" >10.1007/978-3-642-36763-2_16</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Planar Graphs as VPG-Graphs

  • Original language description

    A graph is B(k) -VPG when it has an intersection representation by paths in a rectangular grid with at most k bends (turns). It is known that all planar graphs are B(3) -VPG and this was conjectured to be tight. We disprove this conjecture by showing that all planar graphs are B(2) -VPG. We also show that the 4-connected planar graphs constitute a subclass of the intersection graphs of Z-shapes (i.e., a special case of B(2) -VPG). Additionally, we demonstrate that a B(2) -VPG representation of a planargraph can be constructed in O(n^3/2 ) time. We further show that the triangle-free planar graphs are contact graphs of: L-shapes, ?-shapes, vertical segments, and horizontal segments (i.e., a special case of contact B(1) -VPG). From this proof we obtaina new proof that bipartite planar graphs are a subclass of 2-DIR.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Graph Drawing;20th International Symposium, GD 2012 Redmond, WA, USA, September 19-21, 2012 Revised Selected Papers

  • ISBN

    978-3-642-36762-5

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    174-186

  • Publisher name

    Springer

  • Place of publication

    New York, NY, USA

  • Event location

    Redmond

  • Event date

    Sep 19, 2012

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article