All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Non-crossing Connectors in the Plane

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10190984" target="_blank" >RIV/00216208:11320/13:10190984 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007/978-3-642-38236-9_11" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-642-38236-9_11</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-38236-9_11" target="_blank" >10.1007/978-3-642-38236-9_11</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Non-crossing Connectors in the Plane

  • Original language description

    We consider the non-crossing connectors problem, which is stated as follows: Given n regions R1 , . . . , Rn in the plane and finite point sets Pi SUBSET OF Ri for i = 1, . . . , n, are there non-crossing connectors yi for (Ri , Pi ), i.e., arc-connectedsets ?i with Pi SUBSET OF ?i SUBSET OF Ri for every i = 1, . . . , n, such that ?i INTERSECTION ?j = EMPTY SET for all i = j? We prove that non-crossing connectors do always exist if the regions form a collection of pseudo-disks, i.e., the boundaries ofevery pair of regions intersect at most twice. We provide a simple polynomial-time algorithm if each region is the convex hull of the corresponding point set, or if all regions are axis-aligned rectangles. We prove that the general problem is NP-hard, even if the regions are convex, the boundaries of every pair of regions intersect at most four times and Pi consists of only two points on the boundary of Ri for i = 1, . . . , n. Finally, we prove that the non-crossing connectors problem

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Theory and Applications of Models of Computation; 10th International Conference, TAMC 2013, Hong Kong, China, May 20-22, 2013. Proceedings

  • ISBN

    978-3-642-38235-2

  • ISSN

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    108-120

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Hong Kong

  • Event date

    May 20, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article