Joseph-like ideals and harmonic analysis for $osp(m|2n)$
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10191635" target="_blank" >RIV/00216208:11320/13:10191635 - isvavai.cz</a>
Result on the web
<a href="http://imrn.oxfordjournals.org/content/early/2013/04/22/imrn.rnt074.abstract" target="_blank" >http://imrn.oxfordjournals.org/content/early/2013/04/22/imrn.rnt074.abstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imrn/rnt074" target="_blank" >10.1093/imrn/rnt074</a>
Alternative languages
Result language
angličtina
Original language name
Joseph-like ideals and harmonic analysis for $osp(m|2n)$
Original language description
The Joseph ideal in the universal enveloping algebra Graphic is the annihilator ideal of the Graphic-representation on the harmonic functions on Graphic. The Joseph ideal for Graphic is the annihilator ideal of the Segal-Shale-Weil (metaplectic) representation. Both ideals can be constructed in a unified way from a quadratic relation in the tensor algebra Graphic for Graphic equal to Graphic or Graphic. In this paper, we construct two analogous ideals in Graphic and Graphic for Graphic the orthosymplectic Lie super-algebra Graphic and prove that they have unique characterizations that naturally extend the classical case. Then we show that these two ideals are the annihilator ideals of, respectively, the Graphic-representation on the spherical harmonicson Graphic and a generalization of the metaplectic representation to Graphic. This proves that these ideals are reasonable candidates to establish the theory of Joseph-like ideals for Lie super-algebras. We also discuss the relation betw
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Mathematics Research Notices
ISSN
1073-7928
e-ISSN
—
Volume of the periodical
2013
Issue of the periodical within the volume
15
Country of publishing house
GB - UNITED KINGDOM
Number of pages
50
Pages from-to
4291-4340
UT code for WoS article
—
EID of the result in the Scopus database
—