Sub-exponentially many 3-colorings of triangle-free planar graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10283289" target="_blank" >RIV/00216208:11320/13:10283289 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jctb.2013.09.001" target="_blank" >http://dx.doi.org/10.1016/j.jctb.2013.09.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2013.09.001" target="_blank" >10.1016/j.jctb.2013.09.001</a>
Alternative languages
Result language
angličtina
Original language name
Sub-exponentially many 3-colorings of triangle-free planar graphs
Original language description
Thomassen conjectured that every triangle-free planar graph on n vertices has exponentially many 3-colorings, and proved that it has at least 2(n1/12/20) (000) distinct 3-colorings. We show that it has at least 2(root n/212) distinct 3-colorings.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
—
Volume of the periodical
103
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
706-712
UT code for WoS article
000327561900005
EID of the result in the Scopus database
—