All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A jump to the Narayana number for hereditary properties of ordered 3-uniform hypergraphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476262" target="_blank" >RIV/00216208:11320/23:10476262 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=95pq5m9Iol" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=95pq5m9Iol</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2023.103744" target="_blank" >10.1016/j.ejc.2023.103744</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A jump to the Narayana number for hereditary properties of ordered 3-uniform hypergraphs

  • Original language description

    For k, l &gt;= 2 we consider ideals of edge l-colored complete k-uniform hypergraphs (n, x) with vertex sets [n] = {1, 2, ... n} for n is an element of N. An ideal is a set of such colored hypergraphs that is closed under the induced ordered sub-hypergraph relation. We obtain analogues of two results of Klazar (2010) who considered graphs, namely we prove two jumps for growth functions of such ideals of colored hypergraphs. The first jump is for any k, l &gt;= 2 and says that the growth function is either eventually constant or at least n - k + 2. The second jump is only for k = 3 and l = 2 and says that the growth function of an ideal of edge two-colored complete 3-uniform hypergraphs grows either at most polynomially, or for n &gt;= 23 at least as Gn where Gn is the sequence defined by G1 = G2 = 1, G3 = 2 and Gn = Gn-1 + Gn-3 for n &gt;= 4. The lower bounds in both jumps are tight. (c) 2023 Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

    1095-9971

  • Volume of the periodical

    113

  • Issue of the periodical within the volume

    October 2023

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    48

  • Pages from-to

    103744

  • UT code for WoS article

    001010978300001

  • EID of the result in the Scopus database

    2-s2.0-85160712480