All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Clustered planarity testing revisited

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10282839" target="_blank" >RIV/00216208:11320/14:10282839 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/content/pdf/10.1007%2F978-3-662-45803-7_36.pdf" target="_blank" >http://link.springer.com/content/pdf/10.1007%2F978-3-662-45803-7_36.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-662-45803-7_36" target="_blank" >10.1007/978-3-662-45803-7_36</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Clustered planarity testing revisited

  • Original language description

    The Hanani-Tutte theorem is a classical result proved for the first time in the 1930s that characterizes planar graphs as graphs that admit a drawing in the plane in which every pair of edges not sharing a vertex cross an even number of times. We generalize this result to clustered graphs with two disjoint clusters, and show that a straightforward extension to flat clustered graphs with three or more disjoint clusters is not possible. For general clustered graphs we show a variant of the Hanani-Tutte theorem in the case when each cluster induces a connected subgraph. Di Battista and Frati proved that clustered planarity of embedded clustered graphs whose every face is incident with at most five vertices can be tested in polynomial time. We give a new and short proof of this result, using the matroid intersection algorithm.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Graph Drawing

  • ISBN

    978-3-662-45802-0

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    428-439

  • Publisher name

    Springer Berlin Heidelberg

  • Place of publication

    Neuveden

  • Event location

    Würzburg

  • Event date

    Sep 24, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article