Clustered planarity testing revisited
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10312286" target="_blank" >RIV/00216208:11320/15:10312286 - isvavai.cz</a>
Result on the web
<a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p24" target="_blank" >http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p24</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Clustered planarity testing revisited
Original language description
We generalize the Hanani-Tutte theorem to clustered graphs with two disjoint clusters, and show that a straightforward extension to flat clustered graphs with three or more disjoint clusters is not possible. For general clustered graphs we show a variantof the Hanani-Tutte theorem in the case when each cluster induces a connected subgraph. Di Battista and Frati proved that clustered planarity of embedded clustered graphs whose every face is incident to at most five vertices can be tested in polynomialtime. We give a new and short proof of this result, using the matroid intersection algorithm.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Combinatorics
ISSN
1077-8926
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
29
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84947074447