All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A coding problem for pairs of subsets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10286297" target="_blank" >RIV/00216208:11320/14:10286297 - isvavai.cz</a>

  • Result on the web

    <a href="http://arxiv.org/pdf/1403.3847v2.pdf" target="_blank" >http://arxiv.org/pdf/1403.3847v2.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-88-7642-525-7_4" target="_blank" >10.1007/978-88-7642-525-7_4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A coding problem for pairs of subsets

  • Original language description

    Let X be an n-element finite set and k a positive an integer less than or equal to n/2. Suppose that {A1,A2} and {B1,B2} are pairs of disjoint k-element subsets of X (that is, |A1|=|A2|=|B1|=|B2|=k, the intersection of A1 and A2 is empty, and so is the intersection of B1 and B2). Define the distance of these pairs by d({A1,A2},{B1,B2}) to be the min{|A1-B1|+|A2-B2|,|A1-B2|+|A2-B1|}. This is the minimum number of elements of the union of A1and A2 that one has to move to obtain the other pair {B1,B2}. LetC(n,k,d) be the maximum size of a family of pairs of disjoint subsets, such that the distance of any two pairs is at least d. Here we establish a conjecture of Brightwell and Katona concerning an asymptotic formula for C(n,k,d) for k,d are fixed and n approaches infinity. Also, we find the exact value of C(n,k,d) in an infinite number of cases, by using special difference sets of integers. Finally, the questions discussed above are put into a more general context and a number of coding

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GPP201%2F12%2FP288" target="_blank" >GPP201/12/P288: Graph representations</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Geometry, Structure and Randomness in Combinatorics

  • ISBN

    978-88-7642-524-0

  • Number of pages of the result

    11

  • Pages from-to

    47-59

  • Number of pages of the book

    160

  • Publisher name

    Edizioni della Normale

  • Place of publication

    Pisa

  • UT code for WoS chapter