Partial regularity for solutions of quasilinear parabolic systems with non smooth in time principle matrix
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10289755" target="_blank" >RIV/00216208:11320/14:10289755 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.na.2013.09.022" target="_blank" >http://dx.doi.org/10.1016/j.na.2013.09.022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2013.09.022" target="_blank" >10.1016/j.na.2013.09.022</a>
Alternative languages
Result language
angličtina
Original language name
Partial regularity for solutions of quasilinear parabolic systems with non smooth in time principle matrix
Original language description
We prove partial regularity of solutions of quasilinear parabolic systems with non smooth in time principal matrix is proved assuming only boundedness and measurability in time variable . In spave variables the coefficients are uniformly in Sarason spaceof functions with vanishing mean oscillation The proof is based on modified A- caloric lemma.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis, Theory, Methods and Applications
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
95 (2014)
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
421-435
UT code for WoS article
—
EID of the result in the Scopus database
—