Regularity problem for one class of nonlinear parabolic systems with non-smooth in time principal matrices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10408347" target="_blank" >RIV/00216208:11320/19:10408347 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=de-GbY.TKB" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=de-GbY.TKB</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14712/1213-7243.2019.010" target="_blank" >10.14712/1213-7243.2019.010</a>
Alternative languages
Result language
angličtina
Original language name
Regularity problem for one class of nonlinear parabolic systems with non-smooth in time principal matrices
Original language description
Partial regularity of solutions to a class of second order nonlinear parabolic systems with non-smooth in time principal matrices is proved in the paper. The coefficients are assumed to be measurable and bounded in the time variable and VMO-smooth in the space variables uniformly with respect to time. To prove the result, we apply the so-called A(t)-caloric approximation method. The method was applied by the authors earlier to study regularity of quasilinear systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Commentationes Mathematicae Universitatis Carolinae
ISSN
0010-2628
e-ISSN
—
Volume of the periodical
60
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
37
Pages from-to
233-269
UT code for WoS article
000475463700008
EID of the result in the Scopus database
2-s2.0-85069657069