Regularity of weak solutions to linear and quasilinear parabolic systems of non-divergence type with non-smooth in time principal matrix: A(t)-caloric method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10335185" target="_blank" >RIV/00216208:11320/17:10335185 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1515/forum-2015-0222" target="_blank" >http://dx.doi.org/10.1515/forum-2015-0222</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/forum-2015-0222" target="_blank" >10.1515/forum-2015-0222</a>
Alternative languages
Result language
angličtina
Original language name
Regularity of weak solutions to linear and quasilinear parabolic systems of non-divergence type with non-smooth in time principal matrix: A(t)-caloric method
Original language description
We prove a modification of the so-called A(t)-caloric lemma stated in our earlier work with O. John [1] to study regularity of weak solutions to parabolic systems of non-divergence type with non-smooth in time principal matrices. As an application, we prove smoothness results in Morrey and Campanato spaces for linear parabolic systems of non-divergence type by the A(t)-caloric approximation method.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Forum Mathematicum
ISSN
0933-7741
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
5
Country of publishing house
DE - GERMANY
Number of pages
26
Pages from-to
1039-1064
UT code for WoS article
000408650800003
EID of the result in the Scopus database
2-s2.0-85028854681