Regularity problem for 2m-order quasilinear parabolic systems with non smooth in time principal matrix. (A(t),m)-caloric approximation method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10409093" target="_blank" >RIV/00216208:11320/18:10409093 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Ls._U0f5IE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Ls._U0f5IE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12775/TMNA.2018.006" target="_blank" >10.12775/TMNA.2018.006</a>
Alternative languages
Result language
angličtina
Original language name
Regularity problem for 2m-order quasilinear parabolic systems with non smooth in time principal matrix. (A(t),m)-caloric approximation method
Original language description
Partial regularity of solutions to a class of 2m-order quasilinear parabolic systems and full interior regularity for 2m-order linear parabolic systems with non smooth in time principal matrices is proved in the paper. The coefficients are assumed to be bounded and measurable in the time variable and VMO-smooth in the space variables uniformly with respect to time. To prove the result, we apply the (A(t), m)-caloric approximation method, m >= 1. It is both an extension of the A(t)-caloric approximation applied by the authors earlier to study regularity problem for systems of the second order with non-smooth coefficients and an extension of the Apolycaloric lemma proved by V. Bögelein in [6] to systems of 2m-order.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topological Methods in Nonlinear Analysis
ISSN
1230-3429
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
36
Pages from-to
111-146
UT code for WoS article
000445937900007
EID of the result in the Scopus database
2-s2.0-85055143663