All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A SAT attack on the Erdős-Szekeres conjecture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10313924" target="_blank" >RIV/00216208:11320/15:10313924 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S1571065315001067" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1571065315001067</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.endm.2015.06.060" target="_blank" >10.1016/j.endm.2015.06.060</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A SAT attack on the Erdős-Szekeres conjecture

  • Original language description

    A classical conjecture of Erdős and Szekeres states that every set of 2^(k MINUS SIGN 2)+1 points in the plane in general position contains k points in convex position. In 2006, Peters and Szekeres introduced the following stronger conjecture: every red-blue coloring of the edges of the ordered complete 3-uniform hypergraph on 2^(k MINUS SIGN 2)+1 vertices contains an ordered k-vertex hypergraph consisting of a red and a blue monotone path that are vertex disjoint except for the common end-vertices. Applying the state of art SAT solver, we refute the conjecture of Peters and Szekeres. We also apply techniques of Erdős, Tuza, and Valtr to refine the Erdős-Szekeres conjecture in order to tackle it with SAT solvers.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-14179S" target="_blank" >GA14-14179S: Algorithmic, structural and complexity aspects of configurations in the plane</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Notes in Discrete Mathematics

  • ISSN

    1571-0653

  • e-ISSN

  • Volume of the periodical

    49

  • Issue of the periodical within the volume

    November 2015

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    7

  • Pages from-to

    425-431

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-84947763546