Quantum graphs and random-matrix theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10315330" target="_blank" >RIV/00216208:11320/15:10315330 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/1751-8113/48/27/275102" target="_blank" >http://dx.doi.org/10.1088/1751-8113/48/27/275102</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8113/48/27/275102" target="_blank" >10.1088/1751-8113/48/27/275102</a>
Alternative languages
Result language
angličtina
Original language name
Quantum graphs and random-matrix theory
Original language description
For simple connected graphs with incommensurate bond lengths and with unitary symmetry we prove the Bohigas-Giannoni-Schmit (BGS) conjecture in its most general form. Using supersymmetry and taking the limit of infinite graph size, we show that the generating function for every (P, Q) correlation function for both closed and open graphs coincides with the corresponding expression of random-matrix theory. We show that the classical Perron-Frobenius operator is bistochastic and possesses a single eigenvalue +1. In the quantum case that implies the existence of a zero (or massless) mode of the effective action. That mode causes universal fluctuation properties. Avoiding the saddle-point approximation we show that for graphs that are classically mixing (i.e. for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap) and that do not carry a special class of bound states, the zero mode dominates in the limit of infinite graph size.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BG - Nuclear, atomic and molecular physics, accelerators
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-07117S" target="_blank" >GA13-07117S: Statistical approaches to quantum many-body systems</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
48
Issue of the periodical within the volume
27
Country of publishing house
GB - UNITED KINGDOM
Number of pages
30
Pages from-to
—
UT code for WoS article
000356343300003
EID of the result in the Scopus database
2-s2.0-84935885322