Stokes system with a solution dependent slip bound: Stability of solutions with respect to domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10330629" target="_blank" >RIV/00216208:11320/16:10330629 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/zamm.201500117" target="_blank" >http://dx.doi.org/10.1002/zamm.201500117</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/zamm.201500117" target="_blank" >10.1002/zamm.201500117</a>
Alternative languages
Result language
angličtina
Original language name
Stokes system with a solution dependent slip bound: Stability of solutions with respect to domains
Original language description
The paper deals with the Stokes system in a planar bounded domain with a friction type boundary condition and a threshold bound which depends on the solution itself. Under appropriate assumptions the existence and uniqueness of the solution is proven and the stability of solutions to a mixed variational formulation of the problem with respect to a class of domains is established. These results can be used to prove the existence of optimal shapes in a class of shape optimization problems governed by the Stokes system with the threshold boundary conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ZAMM Zeitschrift für Angewandte Mathematik und Mechanik
ISSN
0044-2267
e-ISSN
—
Volume of the periodical
96
Issue of the periodical within the volume
9
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
1049-1060
UT code for WoS article
000385670000003
EID of the result in the Scopus database
2-s2.0-84985916233