All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Stokes system with a solution dependent slip bound: Stability of solutions with respect to domains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10330629" target="_blank" >RIV/00216208:11320/16:10330629 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1002/zamm.201500117" target="_blank" >http://dx.doi.org/10.1002/zamm.201500117</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/zamm.201500117" target="_blank" >10.1002/zamm.201500117</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Stokes system with a solution dependent slip bound: Stability of solutions with respect to domains

  • Original language description

    The paper deals with the Stokes system in a planar bounded domain with a friction type boundary condition and a threshold bound which depends on the solution itself. Under appropriate assumptions the existence and uniqueness of the solution is proven and the stability of solutions to a mixed variational formulation of the problem with respect to a class of domains is established. These results can be used to prove the existence of optimal shapes in a class of shape optimization problems governed by the Stokes system with the threshold boundary conditions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ZAMM Zeitschrift für Angewandte Mathematik und Mechanik

  • ISSN

    0044-2267

  • e-ISSN

  • Volume of the periodical

    96

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    12

  • Pages from-to

    1049-1060

  • UT code for WoS article

    000385670000003

  • EID of the result in the Scopus database

    2-s2.0-84985916233