Stokes problem with a solution dependent slip bound: Stability of solutions with respect to domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F16%3A00000277" target="_blank" >RIV/46747885:24220/16:00000277 - isvavai.cz</a>
Result on the web
<a href="http://onlinelibrary.wiley.com/doi/10.1002/zamm.201500117/abstract" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/zamm.201500117/abstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/zamm.201500117" target="_blank" >10.1002/zamm.201500117</a>
Alternative languages
Result language
angličtina
Original language name
Stokes problem with a solution dependent slip bound: Stability of solutions with respect to domains
Original language description
We study the Stokes problem in a bounded planar domain Ω with a friction type boundary condition that switches between a slip and no-slip stage. Unlike our previous work [8], in the present paper the threshold value may depend on the velocity field. Besides the usual velocity-pressure formulation, we introduce an alternative formulation with three Lagrange multipliers which allows a more flexible treatment of the impermeability condition as well as optimum design problems with cost functions depending on the shear and/or normal stress. Our main goal is to determine under which conditions concerning smoothness of the boundary of Ω, solutions to the Stokes system depend continuously on variations of Ω. Having this result at our disposal, we easily prove the existence of a solution to optimal shape design problems for a large class of cost functionals.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik
ISSN
1521-4001
e-ISSN
—
Volume of the periodical
96
Issue of the periodical within the volume
9
Country of publishing house
CH - SWITZERLAND
Number of pages
12
Pages from-to
1049-1060
UT code for WoS article
000385670000003
EID of the result in the Scopus database
2-s2.0-84985916233