All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

L^q solution of the Robin problem for the Stokes system with Coriolis force

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00497142" target="_blank" >RIV/67985840:_____/18:00497142 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00021-018-0380-7" target="_blank" >http://dx.doi.org/10.1007/s00021-018-0380-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-018-0380-7" target="_blank" >10.1007/s00021-018-0380-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    L^q solution of the Robin problem for the Stokes system with Coriolis force

  • Original language description

    We define single layer potential and double layer potential for the stationary Stokes system with Coriolis term and study properties of these potentials. Then using the integral equation method we study the Dirichlet problem, the Neumann problem and the Robin problem for the Stokes system with Coriolis term. We look for solutions of the problems such that the maximal functions of the velocity u, of the pressure p and of ∇ u are q-integrable on the boundary, and the boundary conditions are fulfilled in the sense of a non-tangential limit. As a consequence we study solutions of the Dirichlet problem for an exterior domain in the homogeneous Sobolev spaces Dk , q(Ω , R3) × Dk - 1 , q(Ω) and in weighted Besov spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    28

  • Pages from-to

    1589-1616

  • UT code for WoS article

    000451973300009

  • EID of the result in the Scopus database

    2-s2.0-85056778791