L^q solution of the Robin problem for the Stokes system with Coriolis force
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00497142" target="_blank" >RIV/67985840:_____/18:00497142 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00021-018-0380-7" target="_blank" >http://dx.doi.org/10.1007/s00021-018-0380-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-018-0380-7" target="_blank" >10.1007/s00021-018-0380-7</a>
Alternative languages
Result language
angličtina
Original language name
L^q solution of the Robin problem for the Stokes system with Coriolis force
Original language description
We define single layer potential and double layer potential for the stationary Stokes system with Coriolis term and study properties of these potentials. Then using the integral equation method we study the Dirichlet problem, the Neumann problem and the Robin problem for the Stokes system with Coriolis term. We look for solutions of the problems such that the maximal functions of the velocity u, of the pressure p and of ∇ u are q-integrable on the boundary, and the boundary conditions are fulfilled in the sense of a non-tangential limit. As a consequence we study solutions of the Dirichlet problem for an exterior domain in the homogeneous Sobolev spaces Dk , q(Ω , R3) × Dk - 1 , q(Ω) and in weighted Besov spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
28
Pages from-to
1589-1616
UT code for WoS article
000451973300009
EID of the result in the Scopus database
2-s2.0-85056778791