The Dirichlet problem for the Stokes system and the integral equations method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00346697" target="_blank" >RIV/67985840:_____/10:00346697 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The Dirichlet problem for the Stokes system and the integral equations method
Original language description
A boundary value problem for the Stokes system is studied in a cracked domain in the Euclidean space, where the Dirichlet condition is specified on the boundary of the domain. The jump of the velocity and the jump of the stress tensor in the normal direction are prescribed on the crack. We construct a solution of this problem in the form of appropriate potentials and determine the unknown source densities via integral equations' systems on the boundary of the domain. The solution is given explicitly inthe form of a series. As a consequence, a maximum modulus estimate for the Stokes system is proved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190804" target="_blank" >IAA100190804: The motion of rigid bodies in liquid: mathematical analysis, numerical simulation and related problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Pure and Applied Mathematics
ISSN
1311-8080
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
1
Country of publishing house
BG - BULGARIA
Number of pages
7
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—