All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A pressure associated with a weak solution to the Navier-Stokes equations with Navier's boundary conditions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00525121" target="_blank" >RIV/67985840:_____/20:00525121 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00021-020-00500-y" target="_blank" >https://doi.org/10.1007/s00021-020-00500-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-020-00500-y" target="_blank" >10.1007/s00021-020-00500-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A pressure associated with a weak solution to the Navier-Stokes equations with Navier's boundary conditions

  • Original language description

    We show that if u is a weak solution to the Navier–Stokes initial–boundary value problem with Navier’s slip boundary conditions in QT:=Ω×(0,T), where Ω is a domain in R3, then an associated pressure p exists as a distribution with a certain structure. Furthermore, we also show that if Ω is a “smooth” domain in R3 then the pressure is represented by a function in QT with a certain rate of integrability. Finally, we study the regularity of the pressure in sub-domains of QT, where u satisfies Serrin’s integrability conditions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    20

  • Pages from-to

    37

  • UT code for WoS article

    000540799900008

  • EID of the result in the Scopus database

    2-s2.0-85086081392