A pressure associated with a weak solution to the Navier-Stokes equations with Navier's boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00525121" target="_blank" >RIV/67985840:_____/20:00525121 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00021-020-00500-y" target="_blank" >https://doi.org/10.1007/s00021-020-00500-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-020-00500-y" target="_blank" >10.1007/s00021-020-00500-y</a>
Alternative languages
Result language
angličtina
Original language name
A pressure associated with a weak solution to the Navier-Stokes equations with Navier's boundary conditions
Original language description
We show that if u is a weak solution to the Navier–Stokes initial–boundary value problem with Navier’s slip boundary conditions in QT:=Ω×(0,T), where Ω is a domain in R3, then an associated pressure p exists as a distribution with a certain structure. Furthermore, we also show that if Ω is a “smooth” domain in R3 then the pressure is represented by a function in QT with a certain rate of integrability. Finally, we study the regularity of the pressure in sub-domains of QT, where u satisfies Serrin’s integrability conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
37
UT code for WoS article
000540799900008
EID of the result in the Scopus database
2-s2.0-85086081392