Existence of very weak solutions to elliptic systems of p-Laplacian type
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10332625" target="_blank" >RIV/00216208:11320/16:10332625 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00526-016-0986-7" target="_blank" >http://dx.doi.org/10.1007/s00526-016-0986-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00526-016-0986-7" target="_blank" >10.1007/s00526-016-0986-7</a>
Alternative languages
Result language
angličtina
Original language name
Existence of very weak solutions to elliptic systems of p-Laplacian type
Original language description
We study vector valued solutions to non-linear elliptic partial differential equations with p-growth. Existence of a solution is shown in case the right hand side is the divergence of a function which is only q integrable, where q is strictly below but close to the duality exponent p'. It implies that possibly degenerate operators of p-Laplacian type are well posed in a larger class then the natural space of existence. The key novelty here is a refined a priori estimate, that recovers a duality relation between the right hand side and the solution in terms of weighted Lebesgue spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Calculus of Variations and Partial Differential Equations
ISSN
0944-2669
e-ISSN
—
Volume of the periodical
55
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
—
UT code for WoS article
000377830200009
EID of the result in the Scopus database
2-s2.0-84971455252