Existence of steady very weak solutions to Navier-Stokes equations with non-Newtonian stress tensors
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441162" target="_blank" >RIV/00216208:11320/21:10441162 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Vk.SE_4gXE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Vk.SE_4gXE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2020.12.038" target="_blank" >10.1016/j.jde.2020.12.038</a>
Alternative languages
Result language
angličtina
Original language name
Existence of steady very weak solutions to Navier-Stokes equations with non-Newtonian stress tensors
Original language description
We provide existence of very weak solutions and a-priori estimates for steady flows of non-Newtonian fluids when the right-hand sides are not in the natural existence class. This includes stress laws that depend non-linearly on the shear rate of the fluid like power-law fluids. To obtain the a-priori estimates we make use of a refined solenoidal Lipschitz truncation that preserves zero boundary values. We provide also estimates in (Muckenhoupt) weighted spaces which permit us to regain a duality pairing, which than can be used to prove existence. Our estimates are valid even in the presence of the convective term. They are obtained via a new comparison method that allows to "cut out" the singularities of the right hand side such that the skew symmetry of the convective term can be used for large parts of the right hand side. (C) 2020 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
279
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
36
Pages from-to
10-45
UT code for WoS article
000617287000002
EID of the result in the Scopus database
2-s2.0-85099625375