Modeling limits in hereditary classes: Reduction and application to trees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333127" target="_blank" >RIV/00216208:11320/16:10333127 - isvavai.cz</a>
Result on the web
<a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i2p52" target="_blank" >http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i2p52</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Modeling limits in hereditary classes: Reduction and application to trees
Original language description
The study of limits of graphs led to elegant limit structures for sparse and dense graphs. This has been unified and generalized by the authors in a more general setting combining analytic tools and model theory to FO-limits (and X-limits) and to the notion of modeling. The existence of modeling limits was established for sequences in a bounded degree class and, in addition, to the case of classes of trees with bounded height and of graphs with bounded tree depth. The natural obstacle for the existence of modeling limit for a monotone class of graphs is the nowhere dense property and it has been conjectured that this is a sufficient condition. Extending earlier results here we derive several general results which present a realistic approach to this conjecture. As an example we then prove that the class of all finite trees admits modeling limits.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Combinatorics
ISSN
1077-8926
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
33
Pages from-to
1-33
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84976262150