UFAL at SemEval-2016 Task 5: Recurrent Neural Networks for Sentence Classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10335536" target="_blank" >RIV/00216208:11320/16:10335536 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
UFAL at SemEval-2016 Task 5: Recurrent Neural Networks for Sentence Classification
Original language description
This paper describes our system for aspect-based sentiment analysis (ABSA). We participate in Subtask 1 (sentence-level ABSA), focusing specifically on aspect category detection. We train a binary classifier for each category. This year's addition of multiple languages makes language-independent approaches attractive. We propose to utilize neural networks which should be capable of discovering linguistic patterns in the data automatically, thereby reducing the need for language-specific tools and feature engineering.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA15-06894S" target="_blank" >GA15-06894S: On linguistic structure of evaluative meaning in Czech</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: International Workshop on Semantic Evaluation (SemEval)
ISBN
978-1-941643-95-2
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
367-371
Publisher name
Association for Computational Linguistics (ACL)
Place of publication
Stroudsburg, PA, USA
Event location
San Diego, CA, USA
Event date
Jun 16, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—