Homogenization of incompressible generalized Stokes ows through a porous medium
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10371660" target="_blank" >RIV/00216208:11320/16:10371660 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.na.2016.01.025" target="_blank" >https://doi.org/10.1016/j.na.2016.01.025</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2016.01.025" target="_blank" >10.1016/j.na.2016.01.025</a>
Alternative languages
Result language
angličtina
Original language name
Homogenization of incompressible generalized Stokes ows through a porous medium
Original language description
We study the homogenization for families of steady and also unsteady incompressible generalized Stokes systems in a periodic porous medium. We assume that the stress tensor possesses an Orlicz growth and the size of solid parts of the porous medium is comparable to the size of the period. Homogenized systems are established using the two-scale convergence method adopted to Orlicz space setting. We prove the existence and uniqueness of weak solutions of the homogenized systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis, Theory, Methods and Applications
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
136
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
39
Pages from-to
1-39
UT code for WoS article
000372056700001
EID of the result in the Scopus database
2-s2.0-84959288224