Embedding the Erdos-Renyi hypergraph into the random regular hypergraph and Hamiltonicity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10360349" target="_blank" >RIV/00216208:11320/17:10360349 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jctb.2016.09.003" target="_blank" >http://dx.doi.org/10.1016/j.jctb.2016.09.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2016.09.003" target="_blank" >10.1016/j.jctb.2016.09.003</a>
Alternative languages
Result language
angličtina
Original language name
Embedding the Erdos-Renyi hypergraph into the random regular hypergraph and Hamiltonicity
Original language description
We establish an inclusion relation between two uniform models of random k-graphs (for constant k >= 2) on n labeled vertices: G((k)) (n, m), the random k-graph with m edges, and R-(k) (n, d), the random d-regular k-graph. We show that if n log n << m << n(k) we can choose d = d(n) similar to km/n and couple G((k)) (n, m) and R-(k) (n, d) so that the latter contains the former with probability tending to one as n -> infinity. This extends an earlier result of Kim and Vu about "sandwiching random graphs". In view of known threshold theorems on the existence of different types of Hamilton cycles in G((k))(n, m), our result allows us to find conditions under which R-(k)(n, d) is Hamiltonian. In particular, for k >= 3 we conclude that if n(k-2) << d << n(k-1), then a.a.s. R-(k)(n, d) contains a tight Hamilton cycle.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
—
Volume of the periodical
122
Issue of the periodical within the volume
January
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
719-740
UT code for WoS article
000389788300033
EID of the result in the Scopus database
—