All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Embedding the Erdos-Renyi hypergraph into the random regular hypergraph and Hamiltonicity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10360349" target="_blank" >RIV/00216208:11320/17:10360349 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jctb.2016.09.003" target="_blank" >http://dx.doi.org/10.1016/j.jctb.2016.09.003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jctb.2016.09.003" target="_blank" >10.1016/j.jctb.2016.09.003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Embedding the Erdos-Renyi hypergraph into the random regular hypergraph and Hamiltonicity

  • Original language description

    We establish an inclusion relation between two uniform models of random k-graphs (for constant k &gt;= 2) on n labeled vertices: G((k)) (n, m), the random k-graph with m edges, and R-(k) (n, d), the random d-regular k-graph. We show that if n log n &lt;&lt; m &lt;&lt; n(k) we can choose d = d(n) similar to km/n and couple G((k)) (n, m) and R-(k) (n, d) so that the latter contains the former with probability tending to one as n -&gt; infinity. This extends an earlier result of Kim and Vu about &quot;sandwiching random graphs&quot;. In view of known threshold theorems on the existence of different types of Hamilton cycles in G((k))(n, m), our result allows us to find conditions under which R-(k)(n, d) is Hamiltonian. In particular, for k &gt;= 3 we conclude that if n(k-2) &lt;&lt; d &lt;&lt; n(k-1), then a.a.s. R-(k)(n, d) contains a tight Hamilton cycle.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Combinatorial Theory. Series B

  • ISSN

    0095-8956

  • e-ISSN

  • Volume of the periodical

    122

  • Issue of the periodical within the volume

    January

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

    719-740

  • UT code for WoS article

    000389788300033

  • EID of the result in the Scopus database