All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hamilton cycles in hypergraphs below the Dirac threshold

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00493792" target="_blank" >RIV/67985840:_____/18:00493792 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jctb.2018.04.010" target="_blank" >http://dx.doi.org/10.1016/j.jctb.2018.04.010</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jctb.2018.04.010" target="_blank" >10.1016/j.jctb.2018.04.010</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hamilton cycles in hypergraphs below the Dirac threshold

  • Original language description

    We establish a precise characterisation of 4-uniform hypergraphs with minimum codegree close to n/2 which contain a Hamilton 2-cycle. As an immediate corollary we identify the exact Dirac threshold for Hamilton 2-cycles in 4-uniform hypergraphs. Moreover, by derandomising the proof of our characterisation we provide a polynomial-time algorithm which, given a 4-uniform hypergraph H with minimum codegree close to n/2, either finds a Hamilton 2-cycle in H or provides a certificate that no such cycle exists. This surprising result stands in contrast to the graph setting, in which below the Dirac threshold it is NP-hard to determine if a graph is Hamiltonian. We also consider tight Hamilton cycles in k-uniform hypergraphs H for k≥3, giving a series of reductions to show that it is NP-hard to determine whether a k-uniform hypergraph H with minimum degree δ(H)≥[Formula presented]|V(H)|−O(1) contains a tight Hamilton cycle.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Combinatorial Theory. B

  • ISSN

    0095-8956

  • e-ISSN

  • Volume of the periodical

    133

  • Issue of the periodical within the volume

    November

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    58

  • Pages from-to

    153-210

  • UT code for WoS article

    000448095200008

  • EID of the result in the Scopus database

    2-s2.0-85046770002