Generating sublocales by subsets and relations: a tangle of adjunctions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368625" target="_blank" >RIV/00216208:11320/17:10368625 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00012-017-0446-z" target="_blank" >http://dx.doi.org/10.1007/s00012-017-0446-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00012-017-0446-z" target="_blank" >10.1007/s00012-017-0446-z</a>
Alternative languages
Result language
angličtina
Original language name
Generating sublocales by subsets and relations: a tangle of adjunctions
Original language description
Generalizing the obvious representation of a subspace as a sublocale in Omega(X) by the congruence {(U,V)|U cup Y=Vcup Y}, one obtains another congruence, first with sublocales S of a frame L, which (as it is well known) produces back the sublocale S itself, and then with general subsets. The relation of such S with the sublocale produced is studied (the result is not always the sublocale generated by S). Further, we discuss in general the associated adjunctions, in particular that between relations on L and subsets of L and view the aforementioned phenomena in this perspective.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebra Universalis
ISSN
0002-5240
e-ISSN
—
Volume of the periodical
78
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
105-118
UT code for WoS article
000407898700008
EID of the result in the Scopus database
—