Localic maps constructed from open and closed parts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368645" target="_blank" >RIV/00216208:11320/17:10368645 - isvavai.cz</a>
Result on the web
<a href="http://www.cgasa.ir/article_15806.html" target="_blank" >http://www.cgasa.ir/article_15806.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Localic maps constructed from open and closed parts
Original language description
Assembling a localic map f : L -> M from localic maps f(i) : S_i -> M, i is an element of J, defined on closed respectively open sublocales (J finite in the closed case) follows the same rules as in the classical case. The corresponding classical facts immediately follow from the behavior of preimages but for obvious reasons such a proof cannot be imitated in the point-free context. Instead, we present simple proofs based on categorical reasoning. There are some related aspects of localic preimages that are of interest, though. They are investigated in the second half of the paper.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
CATEGORIES AND GENERAL ALGEBRAIC STRUCTURES WITH APPLICATIONS
ISSN
2345-5853
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
1
Country of publishing house
IR - IRAN, ISLAMIC REPUBLIC OF
Number of pages
15
Pages from-to
21-35
UT code for WoS article
000393193800004
EID of the result in the Scopus database
—