A FEASIBLE INTERPOLATION FOR RANDOM RESOLUTION
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369459" target="_blank" >RIV/00216208:11320/17:10369459 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.23638/LMCS-13(1:5)2017" target="_blank" >http://dx.doi.org/10.23638/LMCS-13(1:5)2017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23638/LMCS-13(1:5)2017" target="_blank" >10.23638/LMCS-13(1:5)2017</a>
Alternative languages
Result language
angličtina
Original language name
A FEASIBLE INTERPOLATION FOR RANDOM RESOLUTION
Original language description
Random resolution, defined by Buss, Kolodziejczyk and Thapen (JSL, 2014), is a sound propositional proof system that extends the resolution proof system by the possibility to augment any set of initial clauses by a set of randomly chosen clauses (modulo a technical condition). We show how to apply the general feasible interpolation theorem for semantic derivations of Krajicek (JSL, 1997) to random resolution. As a consequence we get a lower bound for random resolution refutations of the clique-coloring formulas.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Logical Methods in Computer Science
ISSN
1860-5974
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
6
Pages from-to
—
UT code for WoS article
000418916500004
EID of the result in the Scopus database
—