SOBOLEV HOMEOMORPHISMS IN W-1,W-k AND THE LUSIN'S CONDITION (N) ON k-DIMENSIONAL SUBSPACES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10371752" target="_blank" >RIV/00216208:11320/17:10371752 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.5186/aasfm.2017.4244" target="_blank" >http://dx.doi.org/10.5186/aasfm.2017.4244</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5186/aasfm.2017.4244" target="_blank" >10.5186/aasfm.2017.4244</a>
Alternative languages
Result language
angličtina
Original language name
SOBOLEV HOMEOMORPHISMS IN W-1,W-k AND THE LUSIN'S CONDITION (N) ON k-DIMENSIONAL SUBSPACES
Original language description
We construct a Sobolev homeomorphisms F is an element of W-1,W-2((0,1)(4), R-4) which fails the 2-dimensional Lusin's condition on H-2-positively many hyperplanes, i.e. there exists C-1 subset of [0,1](2) with H-2(C-1) > 0, such that for each (z, w) is an element of C-1 there is a set A((z,w)) C [0,1](2) with H-2(A((z,w))) = 0 and H-2(F(A((z,w)) x {(z, w)})) > 0.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LL1203" target="_blank" >LL1203: Properties of functions and mappings in Sobolev spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales Academiae Scientiarum Fennicae - Mathematica
ISSN
1239-629X
e-ISSN
—
Volume of the periodical
42
Issue of the periodical within the volume
2
Country of publishing house
FI - FINLAND
Number of pages
27
Pages from-to
771-797
UT code for WoS article
000409156500016
EID of the result in the Scopus database
—