A sense-preserving Sobolev homeomorphism with negative Jacobian almost everywhere
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019416" target="_blank" >RIV/62690094:18470/22:50019416 - isvavai.cz</a>
Alternative codes found
RIV/60076658:12510/22:43902596 RIV/00216208:11320/22:10456400
Result on the web
<a href="https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12573" target="_blank" >https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12573</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/jlms.12573" target="_blank" >10.1112/jlms.12573</a>
Alternative languages
Result language
angličtina
Original language name
A sense-preserving Sobolev homeomorphism with negative Jacobian almost everywhere
Original language description
For every 1 <= p<32$1leqslant p<frac{3}{2}$ we construct a Sobolev homeomorphism f is an element of W1,p([-1,1]4,[-1,1]4)$fin W<^>{1,p}([-1,1]<^>4,[-1,1]<^>4)$ such that f(x)=x$f(x)=x$ for every x is an element of partial differential [-1,1]4$xin partial [-1,1]<^>4$ but Jf<0$J_f<0$ a.e.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ20-19018Y" target="_blank" >GJ20-19018Y: Delicate analytical and topological tools for variational problems and modelling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the London Mathematical Society - Second Series
ISSN
0024-6107
e-ISSN
1469-7750
Volume of the periodical
106
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
76
Pages from-to
235-310
UT code for WoS article
000778034300001
EID of the result in the Scopus database
—