ON THE NECESSITY OF BUMP CONDITIONS FOR THE TWO-WEIGHTED MAXIMAL INEQUALITY
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10372606" target="_blank" >RIV/00216208:11320/17:10372606 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1090/proc/13355" target="_blank" >http://dx.doi.org/10.1090/proc/13355</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/proc/13355" target="_blank" >10.1090/proc/13355</a>
Alternative languages
Result language
angličtina
Original language name
ON THE NECESSITY OF BUMP CONDITIONS FOR THE TWO-WEIGHTED MAXIMAL INEQUALITY
Original language description
We study the necessity of bump conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted L-p spaces with different weights. The conditions in question are obtained by replacing the L-p' average of sigma(1/p)' in the Muckenhoupt A(p)-condition by an average with respect to a stronger Banach function norm, and are known to be sufficient for the two-weighted maximal inequality. We show that these conditions are in general not necessary for such an inequality to be true.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-14743S" target="_blank" >GA13-14743S: Function spaces, weighted inequalities and interpolation II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
145
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
109-118
UT code for WoS article
000387356500010
EID of the result in the Scopus database
2-s2.0-84994229452