All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The hamburger theorem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10366176" target="_blank" >RIV/00216208:11320/18:10366176 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.comgeo.2017.06.012" target="_blank" >http://dx.doi.org/10.1016/j.comgeo.2017.06.012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.comgeo.2017.06.012" target="_blank" >10.1016/j.comgeo.2017.06.012</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The hamburger theorem

  • Original language description

    We generalize the ham sandwich theorem to d+1 measures on R^d as follows. Let mu_1, mu_2, ..., mu_{d+1} be absolutely continuous finite Borel measures on R^d. Let omega_i=mu_i(R^d) for i in [d+1], omega=min{omega_i; i in [d+1]} and assume that sum_{j=1}^{d+1} omega_j=1. Assume that omega_i &lt;= 1/d for every i in [d+1]. Then there exists a hyperplane h such that each open halfspace H defined by h satisfies mu_i(H) &lt;= (sum_{j=1}^{d+1} mu_j(H))/d for every i in [d+1] and sum_{j=1}^{d+1} mu_j(H) &gt;= min{1/2, 1 - d*omega} &gt;= 1/(d+1). As a consequence we obtain that every (d+1)-colored set of nd points in R^d such that no color is used for more than n points can be partitioned into n disjoint rainbow (d-1)-dimensional simplices.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA14-14179S" target="_blank" >GA14-14179S: Algorithmic, structural and complexity aspects of configurations in the plane</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computational Geometry: Theory and Applications

  • ISSN

    0925-7721

  • e-ISSN

  • Volume of the periodical

    68

  • Issue of the periodical within the volume

    March

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    7

  • Pages from-to

    167-173

  • UT code for WoS article

    000415778300013

  • EID of the result in the Scopus database

    2-s2.0-85022228714