JOINT WEAK TYPE INTERPOLATION ON LORENTZ-KARAMATA SPACES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10378067" target="_blank" >RIV/00216208:11320/18:10378067 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.7153/mia-2018-21-28" target="_blank" >https://doi.org/10.7153/mia-2018-21-28</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7153/mia-2018-21-28" target="_blank" >10.7153/mia-2018-21-28</a>
Alternative languages
Result language
angličtina
Original language name
JOINT WEAK TYPE INTERPOLATION ON LORENTZ-KARAMATA SPACES
Original language description
We present sharp interpolation theorems, including all limiting cases, for a class of quasilinear operators of joint weak type acting between Lorentz-Karamata spaces over sigma-finite measure. This class contains many of the important integral operators. The optimality in the scale of Lorentz-Karamata spaces is also discussed. The proofs of our results rely on a characterization of Hardy-type inequalities restricted to monotone functions and with power-slowly varying weights. Some of the limiting cases of these inequalities have not been considered in the literature so far.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Inequalities and Applications
ISSN
1331-4343
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
2
Country of publishing house
CR - COSTA RICA
Number of pages
36
Pages from-to
385-420
UT code for WoS article
000427743600007
EID of the result in the Scopus database
2-s2.0-85043991303