Generalized Coloring of Permutations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10378317" target="_blank" >RIV/00216208:11320/18:10378317 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.ESA.2018.50" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ESA.2018.50</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ESA.2018.50" target="_blank" >10.4230/LIPIcs.ESA.2018.50</a>
Alternative languages
Result language
angličtina
Original language name
Generalized Coloring of Permutations
Original language description
A permutation $pi$ is a emph{merge} of a permutation $sigma$ and a permutation $tau$, if we can color the elements of $pi$ red and blue so that the red elements have the same relative order as $sigma$ and the blue ones as~$tau$. We consider, for fixed hereditary permutation classes $cC$ and $cD$, the complexity of determining whether a given permutation $pi$ is a merge of an element of $cC$ with an element of~$cD$. We develop general algorithmic approaches for identifying polynomially tractable cases of merge recognition. Our tools include a version of nondeterministic logspace streaming recognizability of permutations, which we introduce, and a concept of bounded width decomposition, inspired by the work of Ahal and Rabinovich. As a consequence of the general results, we can provide nontrivial examples of tractable permutation merges involving commonly studied permutation classes, such as the class of layered permutations, the class of separable permutations, or the class of permutations avoiding a decreasing sequence of a given length. On the negative side, we obtain a general hardness result which implies, for example, that it is NP-complete to recognize the permutations that can be merged from two subpermutations avoiding the pattern 2413.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-19158S" target="_blank" >GA18-19158S: Algorithmic, structural and complexity aspects of geometric and other configurations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
26th Annual European Symposium on Algorithms (ESA 2018)
ISBN
978-3-95977-081-1
ISSN
1868-8969
e-ISSN
neuvedeno
Number of pages
14
Pages from-to
1-14
Publisher name
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Place of publication
Dagstuhl, Germany
Event location
Helsinky, Finsko
Event date
Aug 20, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—