DILATION VOLUMES OF SETS OF FINITE PERIMETER
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385931" target="_blank" >RIV/00216208:11320/18:10385931 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1017/apr.2018.52" target="_blank" >https://doi.org/10.1017/apr.2018.52</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/apr.2018.52" target="_blank" >10.1017/apr.2018.52</a>
Alternative languages
Result language
angličtina
Original language name
DILATION VOLUMES OF SETS OF FINITE PERIMETER
Original language description
In this paper we analyze the first-order behavior (that is, the right-sided derivative) of the volume of the dilation A circle plus t Q as t converges to 0. Here A and Q are subsets of n-dimensional Euclidean space, A has finite perimeter, and Q is finite. If Q consists of two points only, x and x + u, say, this derivative coincides up to a sign with the directional derivative of the covariogram of A in direction u. By known results for the covariogram, this derivative can therefore be expressed by the cosine transform of the surface area measure of A. We extend this result to finite sets Q and use it to determine the derivative of the contact distribution function with finite structuring element of a stationary random set at 0. The proofs are based on an approximation of the indicator function of A by smooth functions of bounded variation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA15-08218S" target="_blank" >GA15-08218S: Theory of real functions and its applications in geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Applied Probability
ISSN
0001-8678
e-ISSN
—
Volume of the periodical
50
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
24
Pages from-to
1095-1118
UT code for WoS article
000451616400004
EID of the result in the Scopus database
2-s2.0-85057816133