All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387302" target="_blank" >RIV/00216208:11320/18:10387302 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.ESA.2018.12" target="_blank" >https://doi.org/10.4230/LIPIcs.ESA.2018.12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ESA.2018.12" target="_blank" >10.4230/LIPIcs.ESA.2018.12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

  • Original language description

    A quasi-Gray code of dimension n and length l over an alphabet Sigma is a sequence of distinct words w_1,w_2,...,w_l from Sigma^n such that any two consecutive words differ in at most c coordinates, for some fixed constant c&gt;0. In this paper we are interested in the read and write complexity of quasi-Gray codes in the bit-probe model, where we measure the number of symbols read and written in order to transform any word w_i into its successor w_{i+1}. We present construction of quasi-Gray codes of dimension n and length 3^n over the ternary alphabet {0,1,2} with worst-case read complexity O(log n) and write complexity 2. This generalizes to arbitrary odd-size alphabets. For the binary alphabet, we present quasi-Gray codes of dimension n and length at least 2^n - 20n with worst-case read complexity 6+log n and write complexity 2. This complements a recent result by Raskin [Raskin &apos;17] who shows that any quasi-Gray code over binary alphabet of length 2^n has read complexity Omega(n). Our results significantly improve on previously known constructions and for the odd-size alphabets we break the Omega(n) worst-case barrier for space-optimal (non-redundant) quasi-Gray codes with constant number of writes. We obtain our results via a novel application of algebraic tools together with the principles of catalytic computation [Buhrman et al. &apos;14, Ben-Or and Cleve &apos;92, Barrington &apos;89, Coppersmith and Grossman &apos;75].

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    26th Annual European Symposium on Algorithms, {ESA} 2018, August 20-22, 2018, Helsinki, Finland

  • ISBN

    978-3-95977-081-1

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    15

  • Pages from-to

    1-15

  • Publisher name

    Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik

  • Place of publication

    Schloss Dagstuhl, Germany

  • Event location

    Helsinki, Finland

  • Event date

    Aug 20, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article