Periods and Borders of Random Words
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331382" target="_blank" >RIV/00216208:11320/16:10331382 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Periods and Borders of Random Words
Original language description
We investigate the behavior of the periods and border lengths of random words over a fixed alphabet. We show that the asymptotic probability that a random word has a given maximal border length k is a constant, depending only on k and the alphabet size ℓ . We give a recurrence that allows us to determine these constants with any required precision. This also allows us to evaluate the expected period of a random word. For the binary case, the expected period is asymptotically about nMINUS SIGN 1.641 . We also give explicit formulas for the probability that a random word is unbordered or has maximum border length one.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Leibniz international proceedings in informatics
ISBN
978-3-95977-001-9
ISSN
1868-8969
e-ISSN
—
Number of pages
10
Pages from-to
1-10
Publisher name
Dagstuhl Publishing
Place of publication
Německo
Event location
USA, Orleans
Event date
Feb 17, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—