All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Periods and Borders of Random Words

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331382" target="_blank" >RIV/00216208:11320/16:10331382 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Periods and Borders of Random Words

  • Original language description

    We investigate the behavior of the periods and border lengths of random words over a fixed alphabet. We show that the asymptotic probability that a random word has a given maximal border length k is a constant, depending only on k and the alphabet size ℓ . We give a recurrence that allows us to determine these constants with any required precision. This also allows us to evaluate the expected period of a random word. For the binary case, the expected period is asymptotically about nMINUS SIGN 1.641 . We also give explicit formulas for the probability that a random word is unbordered or has maximum border length one.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz international proceedings in informatics

  • ISBN

    978-3-95977-001-9

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    1-10

  • Publisher name

    Dagstuhl Publishing

  • Place of publication

    Německo

  • Event location

    USA, Orleans

  • Event date

    Feb 17, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article