Interpolation theorem for Marcinkiewicz spaces with applications to Lorentz gamma spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10396441" target="_blank" >RIV/00216208:11320/19:10396441 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Zn1bMnxWW2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Zn1bMnxWW2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201700452" target="_blank" >10.1002/mana.201700452</a>
Alternative languages
Result language
angličtina
Original language name
Interpolation theorem for Marcinkiewicz spaces with applications to Lorentz gamma spaces
Original language description
This paper is devoted to the interpolation principle between spaces of weak type. We characterise interpolation spaces between two Marcinkiewicz spaces in terms of Hardy type operators involving suprema. We study general properties of such operators and their behavior on Lorentz gamma spaces. Aparticular emphasis is placed on elementary and comprehensive proofs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-14743S" target="_blank" >GA13-14743S: Function spaces, weighted inequalities and interpolation II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
292
Issue of the periodical within the volume
5
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
1106-1121
UT code for WoS article
000476590000012
EID of the result in the Scopus database
2-s2.0-85054746852