Effective Actions for sigma-Models of Poisson-Lie Type LMS/EPSRC Durham Symposium on Higher Structures in M-Theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405837" target="_blank" >RIV/00216208:11320/19:10405837 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sJc0PSdu3P" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sJc0PSdu3P</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/prop.201910024" target="_blank" >10.1002/prop.201910024</a>
Alternative languages
Result language
angličtina
Original language name
Effective Actions for sigma-Models of Poisson-Lie Type LMS/EPSRC Durham Symposium on Higher Structures in M-Theory
Original language description
(Quasi-)Poisson-Lie T-duality of string effective actions is described in the framework of generalized geometry of Courant algebroids. The approach is based on a generalization of Riemannian geometry in the context of Courant algebroids, including a proper version of a Levi-Civita connection. In our approach, the dilaton field is encoded in a Levi-Civita connection and its form is determined by the Courant algebroid geometry. Explicit examples of background solutions are provided using the approach developed in the paper.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fortschritte der Physik
ISSN
0015-8208
e-ISSN
—
Volume of the periodical
67
Issue of the periodical within the volume
8-9
Country of publishing house
DE - GERMANY
Number of pages
19
Pages from-to
1910024
UT code for WoS article
000486266200025
EID of the result in the Scopus database
2-s2.0-85065329411