Palatini variation in generalized geometry and string effective actions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475415" target="_blank" >RIV/00216208:11320/23:10475415 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/23:00370295
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=P8l2p27_.F" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=P8l2p27_.F</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geomphys.2023.104909" target="_blank" >10.1016/j.geomphys.2023.104909</a>
Alternative languages
Result language
angličtina
Original language name
Palatini variation in generalized geometry and string effective actions
Original language description
We develop the Palatini formalism within the framework of generalized Riemannian geometry of Courant algebroids. In this context, the Palatini variation of a generalized Einstein-Hilbert-Palatini action -formed using a generalized metric, a Courant algebroid connection (in contrary to the ordinary case, not necessarily a torsionless one) and a volume form -leads naturally to a proper notion of a generalized Levi-Civita connection and low-energy effective actions of string theory.& COPY; 2023 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometry and Physics
ISSN
0393-0440
e-ISSN
1879-1662
Volume of the periodical
2023
Issue of the periodical within the volume
191
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
104909
UT code for WoS article
001027197700001
EID of the result in the Scopus database
2-s2.0-85162775784