Effective Actions for σ-Models of Poisson–Lie Type: LMS/EPSRC Durham Symposium on Higher Structures in M-Theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00334122" target="_blank" >RIV/68407700:21340/19:00334122 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/prop.201910024" target="_blank" >https://doi.org/10.1002/prop.201910024</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/prop.201910024" target="_blank" >10.1002/prop.201910024</a>
Alternative languages
Result language
angličtina
Original language name
Effective Actions for σ-Models of Poisson–Lie Type: LMS/EPSRC Durham Symposium on Higher Structures in M-Theory
Original language description
(Quasi-)Poisson-Lie T-duality of string effective actions is described in the framework of generalized geometry of Courant algebroids. The approach is based on a generalization of Riemannian geometry in the context of Courant algebroids, including a proper version of a Levi-Civita connection. In our approach, the dilaton field is encoded in a Levi-Civita connection and its form is determined by the Courant algebroid geometry. Explicit examples of background solutions are provided using the approach developed in the paper.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS
ISSN
0015-8208
e-ISSN
1521-3978
Volume of the periodical
67
Issue of the periodical within the volume
8-9
Country of publishing house
DE - GERMANY
Number of pages
18
Pages from-to
—
UT code for WoS article
000486266200025
EID of the result in the Scopus database
2-s2.0-85065329411