All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Higher order gamma-limits for singularly perturbed Dirichlet-Neumann problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10409087" target="_blank" >RIV/00216208:11320/19:10409087 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=R_igVvFrkM" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=R_igVvFrkM</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/18M1219084" target="_blank" >10.1137/18M1219084</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Higher order gamma-limits for singularly perturbed Dirichlet-Neumann problems

  • Original language description

    A mixed Dirichlet-Neumann problem is regularized with a family of singularly perturbed Neumann-Robin boundary problems, parametrized by ε &gt; 0. Using an asymptotic development by Gamma-convergence, the asymptotic behavior of the solutions to the perturbed problems is studied as ε RIGHTWARDS ARROW 0+, recovering classical results in the literature.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Mathematical Analysis

  • ISSN

    0036-1410

  • e-ISSN

  • Volume of the periodical

    51

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    36

  • Pages from-to

    3337-3372

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85075510710