All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An Erdos-Ko-Rado theorem for unions of length 2 paths

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420394" target="_blank" >RIV/00216208:11320/20:10420394 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_ah.lgPJhr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_ah.lgPJhr</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.disc.2020.112121" target="_blank" >10.1016/j.disc.2020.112121</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An Erdos-Ko-Rado theorem for unions of length 2 paths

  • Original language description

    A family of sets is intersecting if any two sets in the family intersect. Given a graph G and an integer r &gt;= 1, let I-(r)(G) denote the family of independent sets of size r of G. For a vertex v of G, the family of independent sets of size r that contain v is called an r-star. Then G is said to be r-EKR if no intersecting subfamily of I-(r)(G) is bigger than the largest r-star. Let n be a positive integer, and let G consist of the disjoint union of n paths each of length 2. We prove that if 1 &lt;= r &lt;= n/2, then G is r-EKR. This affirms a longstanding conjecture of Holroyd and Talbot for this class of graphs and can be seen as an analogue of a well-known theorem on signed sets, proved using different methods, by Deza and Frankl and by Bollobas and Leader. Our main approach is a novel probabilistic extension of Katona&apos;s elegant cycle method, which might be of independent interest. (c) 2020 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-21082S" target="_blank" >GA19-21082S: Graphs and their algebraic properties</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete Mathematics

  • ISSN

    0012-365X

  • e-ISSN

  • Volume of the periodical

    343

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    6

  • Pages from-to

    112121

  • UT code for WoS article

    000579057200033

  • EID of the result in the Scopus database

    2-s2.0-85089850535