All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Maximal nonassociativity via nearfields

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420774" target="_blank" >RIV/00216208:11320/20:10420774 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=u9F56sNiy_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=u9F56sNiy_</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ffa.2019.101610" target="_blank" >10.1016/j.ffa.2019.101610</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Maximal nonassociativity via nearfields

  • Original language description

    We say that (x, y, z) Q3 is an associative triple in a quasigroup Q(*) if (x * y) * z = x * (y * z). It is easy to show that the number of associative triples in Q is at least (Q), and it was conjectured that quasigroups with exactly (Q) associative triples do not exist when (Q) &gt;1. We refute this conjecture by proving the existence of quasigroups with exactly (Q) associative triples for a wide range of values (Q). Our main tools are quadratic Dickson nearfields and the Weil bound on quadratic character sums.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Finite Fields and their Applications

  • ISSN

    1071-5797

  • e-ISSN

  • Volume of the periodical

    62

  • Issue of the periodical within the volume

    27

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    26

  • Pages from-to

    101610

  • UT code for WoS article

    000510314300005

  • EID of the result in the Scopus database

    2-s2.0-85074987674