Maximally nonassociative quasigroups via quadratic orthomorphisms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438425" target="_blank" >RIV/00216208:11320/21:10438425 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pyWuaUt8Ci" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pyWuaUt8Ci</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5802/alco.165" target="_blank" >10.5802/alco.165</a>
Alternative languages
Result language
angličtina
Original language name
Maximally nonassociative quasigroups via quadratic orthomorphisms
Original language description
A quasigroup Q is called maximally nonassociative if for x, y, z ELEMENT OF Q we have that x . (y . z) = (x . y) . z only if x = y = z. We show that, with finitely many exceptions, there exists a maximally nonassociative quasigroup of order n whenever n is not of the form n = 2p1 or n = 2p1p2 for primes p1, p2 with p1 6 p2 < 2p1.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebraic Combinatorics [online]
ISSN
2589-5486
e-ISSN
—
Volume of the periodical
2021
Issue of the periodical within the volume
4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
501-515
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85109292503