ON THE NUMBER OF QUADRATIC ORTHOMORPHISMS THAT PRODUCE MAXIMALLY NONASSOCIATIVE QUASIGROUPS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471873" target="_blank" >RIV/00216208:11320/23:10471873 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KL87B~feZE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KL87B~feZE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1446788722000386" target="_blank" >10.1017/S1446788722000386</a>
Alternative languages
Result language
angličtina
Original language name
ON THE NUMBER OF QUADRATIC ORTHOMORPHISMS THAT PRODUCE MAXIMALLY NONASSOCIATIVE QUASIGROUPS
Original language description
Let q be an odd prime power and suppose that a,bELEMENT OFFq are such that ab and (1-a)(1-b) are nonzero squares. Let Qa,b=(Fq,ASTERISK OPERATOR) be the quasigroup in which the operation is defined by uASTERISK OPERATORv=u+a(v-u) if v-u is a square, and uASTERISK OPERATORv=u+b(v-u) if v-u is a nonsquare. This quasigroup is called maximally nonassociative if it satisfies xASTERISK OPERATOR(yASTERISK OPERATORz)=(xASTERISK OPERATORy)ASTERISK OPERATORzLEFT RIGHT DOUBLE ARROWx=y=z. Denote by σ(q) the number of (a,b) for which Qa,b is maximally nonassociative. We show that there exist constants αALMOST EQUAL TO0.02908 and βALMOST EQUAL TO0.01259 such that if qIDENTICAL TO1mod4, then limσ(q)/q2=α, and if qIDENTICAL TO3mod4, then limσ(q)/q2=β.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the Australian Mathematical Society
ISSN
1446-7887
e-ISSN
1446-8107
Volume of the periodical
115
Issue of the periodical within the volume
3
Country of publishing house
AU - AUSTRALIA
Number of pages
26
Pages from-to
311-336
UT code for WoS article
000936762700001
EID of the result in the Scopus database
2-s2.0-85177810821