All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ON THE NUMBER OF QUADRATIC ORTHOMORPHISMS THAT PRODUCE MAXIMALLY NONASSOCIATIVE QUASIGROUPS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471873" target="_blank" >RIV/00216208:11320/23:10471873 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KL87B~feZE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KL87B~feZE</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S1446788722000386" target="_blank" >10.1017/S1446788722000386</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ON THE NUMBER OF QUADRATIC ORTHOMORPHISMS THAT PRODUCE MAXIMALLY NONASSOCIATIVE QUASIGROUPS

  • Original language description

    Let q be an odd prime power and suppose that a,bELEMENT OFFq are such that ab and (1-a)(1-b) are nonzero squares. Let Qa,b=(Fq,ASTERISK OPERATOR) be the quasigroup in which the operation is defined by uASTERISK OPERATORv=u+a(v-u) if v-u is a square, and uASTERISK OPERATORv=u+b(v-u) if v-u is a nonsquare. This quasigroup is called maximally nonassociative if it satisfies xASTERISK OPERATOR(yASTERISK OPERATORz)=(xASTERISK OPERATORy)ASTERISK OPERATORzLEFT RIGHT DOUBLE ARROWx=y=z. Denote by σ(q) the number of (a,b) for which Qa,b is maximally nonassociative. We show that there exist constants αALMOST EQUAL TO0.02908 and βALMOST EQUAL TO0.01259 such that if qIDENTICAL TO1mod4, then limσ(q)/q2=α, and if qIDENTICAL TO3mod4, then limσ(q)/q2=β.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the Australian Mathematical Society

  • ISSN

    1446-7887

  • e-ISSN

    1446-8107

  • Volume of the periodical

    115

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    AU - AUSTRALIA

  • Number of pages

    26

  • Pages from-to

    311-336

  • UT code for WoS article

    000936762700001

  • EID of the result in the Scopus database

    2-s2.0-85177810821