All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hrushovski's Encoding and ω-Categorical CSP Monsters

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420930" target="_blank" >RIV/00216208:11320/20:10420930 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.ICALP.2020.131" target="_blank" >https://doi.org/10.4230/LIPIcs.ICALP.2020.131</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.131" target="_blank" >10.4230/LIPIcs.ICALP.2020.131</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hrushovski's Encoding and ω-Categorical CSP Monsters

  • Original language description

    We produce a class of ω-categorical structures with finite signature by applying a model-theoretic construction - a refinement of an encoding due to Hrushosvki - to ω-categorical structures in a possibly infinite signature. We show that the encoded structures retain desirable algebraic properties of the original structures, but that the constraint satisfaction problems (CSPs) associated with these structures can be badly behaved in terms of computational complexity. This method allows us to systematically generate ω-categorical templates whose CSPs are complete for a variety of complexity classes of arbitrarily high complexity, and ω-categorical templates that show that membership in any given complexity class cannot be expressed by a set of identities on the polymorphisms. It moreover enables us to prove that recent results about the relevance of topology on polymorphism clones of ω-categorical structures also apply for CSP templates, i.e., structures in a finite language. Finally, we obtain a concrete algebraic criterion which could constitute a description of the delineation between tractability and NP-hardness in the dichotomy conjecture for first-order reducts of finitely bounded homogeneous structures.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA13-01832S" target="_blank" >GA13-01832S: General algebra and its connections to computer science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    1-17

  • Publisher name

    Schloss Dagstuhl-Leibniz

  • Place of publication

    Německo

  • Event location

    SRN, online

  • Event date

    Jul 8, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article