Classifying Modules in Add of a Class of Modules with Semilocal Endomorphism Rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420937" target="_blank" >RIV/00216208:11320/20:10420937 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-43416-8_15" target="_blank" >https://doi.org/10.1007/978-3-030-43416-8_15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-43416-8_15" target="_blank" >10.1007/978-3-030-43416-8_15</a>
Alternative languages
Result language
angličtina
Original language name
Classifying Modules in Add of a Class of Modules with Semilocal Endomorphism Rings
Original language description
We present a dimension theory for modules in Add(C), where C is a class of modules with semilocal endomorphism rings satisfying certain smallness conditions. For example, if C is the class of all finitely presented modules over a semilocal ring R, then we get cardinal invariants which describe pure projective R-modules up to isomorphism.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Springer Proceedings in Mathematics and Statistics
ISBN
—
ISSN
2194-1009
e-ISSN
—
Number of pages
15
Pages from-to
269-283
Publisher name
Springer
Place of publication
Berlin
Event location
Graz, Austria
Event date
Feb 19, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—